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Abstract

An approach to treat the reflectometry and ellipsometry data for bulk samples covered by an overlayer is
suggested. The data can be used for the measurement of optical constants of solids, characterization of
overlayers, and probe of the abruptness of spatial distribution of the bulk dielectric function. Numerical
simulation shows that in the soft x-ray and XUV ranges the method can be applied for overlayers up
to a thickness of 3–8 nm.

1. Introduction

Reflectometry and ellipsometry are the most convenient and widely used methods to determine the
optical constants (i.e., real and imaginary parts of the dielectric function) of bulk materials. In reflec-
tometry the intensity reflectivity |Rp|2 (or |Rs|2) of a sample is measured versus the angle of incidence
or photon energy. In ellipsometry the quantity measured is the complex reflection ratio (or polarization
factor)

ρ =
Rs

Rp
(1)

where Rs and Rp are the amplitude reflection coefficients. A comprehensive survey of the methods
with analysis of the accuracy within a wide spectral range can be found in [1–3]. To express the material
dielectric function in terms of the reflection coefficients, each of the above methods essentially uses Fresnel
formulas:

Rs =
n0 − n

n0 + n
, Rp =

εn0 − n

εn0 + n
, n0 = sin θ, n =

√
ε− cos2 θ (2)

where θ is the grazing angle. The Fresnel formulas imply the two-phase model [3], where the mathemat-
ically sharp surface of a sample separates the bulk material from vacuum or ambience. However, due to
various contamination or diffusion processes, real samples even after accurate preparation and cleaning
cannot be considered as having stepwise spatial behavior with respect to chemical contents and material
structure.

The effect of the overlayer (i.e., the transition zone located between the bulk material and vacuum) on
the determination of the bulk optical constants has been extensively investigated (see [2–4] and references
therein). One of the approaches to improve the accuracy consists in representing an overlayer as a
homogeneous film with unknown thickness d and dielectric function ε0ν which are found from processing
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the reflectivity data using the bulk optical constants [3–5]. However, various spectroscopic measurements
show that the overlayer thickness d obtained in such a way depends on the wavelength in contrast to the
model used. Microanalysis data also confirm the insufficient physical justification of the model. From
the mathematical point of view the replacement of a gradually changing spatial profile of ε(z) by a
homogeneous layer with abrupt interfaces looks like an ambiguous procedure. The routes suggested to
overcome the errors introduced by an overlayer are: (a) to concentrate on preparing high quality samples
to eliminate the surface overlayer as far as possible and (b) to investigate independently the overlayer
structure and introduce the data obtained into the electrodynamic model of a sample.

An alternative effort is made in this paper. We draw attention to some rigorous formulas and relations
for reflectivity coefficients of bulks with an ideally sharp or slightly diffused surface. They are mainly
based on general results [6] of scattering theory which have a long history but have still not been recognized
for measurements within the VUV and soft x-ray regions. The reason for applying them is the small
value of the overlayer thickness as compared with the radiation wavelength λ. It is important that to
have the parameter a/λ not too small to provide observable corrections to the Fresnel formulas (2). This
holds for various kinds of solid and liquid samples within the spectral range extending from far UV to
soft x-rays. No assumptions are made in this approach on the spatial behavior of the dielectric function
varying from the bulk value to vacuum. The formulas obtained for the reflection coefficients can be used
in reflectometry and ellipsometry.

In Secs. 2 and 3, for the sake of completeness we give the full derivation of formulas for the re-
flection coefficients of s- and p-polarized light which are valid for thin transition layers a/λ � 1. Our
approach does not use the Green function formalism (used in [6]) and can obviously be extended to more
complicated cases, for instance, determination of optical constants in thin films.

The final formulas are summarized and discussed in Secs. 4 and 5.
A specific relation between the s-wave reflectivity Rs and complex reflection ratio ρ [see (1)] is

established in Sec. 5. It is a consequence of the Fresnel reflection formulas and therefore can be used to
advantage for the abruptness of an interface.

The results of simulation given in Sec. 6 for VUV and soft x-rays allow one to estimate the typical
overlayer thickness for which the theory can be applied.

The main points of the present paper are briefly discussed in [7].

2. S-polarization

Let ε(z) represent the spatial profile of the complex dielectric permittivity of a sample, tending to
the constant value ε of a bulk material for z � a and to the free space value ε = 1 for z � a. Then, for
an incident beam with vector ~E perpendicular to the plane of incidence, the wave field E(z), reflectivity
R, and transmittivity T can be found as a solution of the 1D scattering problem:

E′′ + k2
[
ε(z)− cos2 θ

]
E = 0, (3)

E ≈ eikn0z + Re−ikn0z, n0 = sin θ, z → −∞,

E ≈ Teiknz, n2 = ε− cos2 θ, ε = ε(z →∞), z →∞.
(4)

The idea of the method for finding an approximate solution to the problem (3), (4) for a slightly
perturbed abrupt interface (ka � 1) is the following. Asymptotics (4) describe the wave field far from
the interface, i.e., in the spatial domain |z| � a. On the other hand, the solution of (3) can be expanded
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into a series of k in the spatial domain k|z|
√

ε(z)− cos2 θ ≈ k|z| � 1, or, in other words |z| � λ. If
ka� 1, i.e., a� λ, the two domains intercept and the reflectivity R and transmittivity T in (4) can be
found as a series of the wave number k:

R(k) = R0 + kR1 + k2R2 + ..., (5)
T (k) = T0 + kT1 + k2T2 + ... (6)

To illustrate the method, we will perform the derivation for the first correction R1 only. Substituting
(5) and (6) into the wave asymptotics (6), we get the following expressions which are valid, if a� |z| � λ:

E(z) = 1 + R0 + k [R1 + i(1−R0)n0z] + ..., (7)
E′(z) = ikn0(1−R0) + k2

[
−in0R1 − n2

0(1 + R0)z
]
+ ... (8)

for z < 0, i.e., −λ� z � −a , and

E(z) = T0 + k [T1 + iT0nz] + ..., (9)
E′(z) = iknT0 + k2

[
inT1 − n2T0z

]
+ ... (10)

for z < 0, i.e., a� z � λ.
On the other hand, for |z| � λ the solution of (3) can be written as a series in powers of k:

E(z) = E0(z) + kE1(z) + k2E2(z) + ... (11)

To determine En(z) we substitute (11) into (3) and find

E′
n(z) = bn −

z∫
0

[
ε(z′)− cos2 θ

]
En−2(z′)dz′, (12)

En(z) = bnz + cn −
z∫

0

(z − z′)
[
ε(z′)− cos2 θ

]
En−2(z′)dz′, (13)

where the constants bn and cn appear due to integration and

E0(z) = b0z + c0, E1(z) = b1z + c1. (14)

Formulas (11)–(14), as well as the set of expressions (7)–(10), represent the wave field for a� |z| � λ,
therefore they should coincide.

Comparing (7) and (14) we obtain immediately that b0 = 0. For a more detailed comparison, let
us take formulas (12) and (13) at |z| � λ and substitute them into (11) keeping only the first two
nonvanishing terms in the fields E(z) and E′(z). Then we see that

E(z) = c0 + k(b1z + c1) + ... (15)

within all the domain a� |z| � λ, and

E′(z) = kb1 − k2

b2 − c0n
2
0z + c0

0∫
−∞

[ε(z)− 1] dz

 + ..., −λ� z � −a, (16)

E′(z) = kb1 − k2

b2 − c0n
2z −

∞∫
0

[ε(z)− ε] dz

 + ..., a� z � λ. (17)
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Now one can equalize the factors at k and k2 in each pair of equations (7) and (15), (9) and (15), (8)
and (16), and (10) and (17), as all of them represent the solution of the scattering problem (3), (4) in
the same spatial domains. From the equations obtained one can find the involved quantities Rn, Tn, cn,
and bn. In particular, we have

R0 = R0s =
n0 − n

n0 + n
, R1 =

i(1 + R0)
n0 + n

P, P =

∞∫
−∞

[ε(z)− 1− (ε− 1)η(z)] dz, (18)

where η(z) is a stepwise Heaviside function: η(z) = 0, z < 0 and η(z) = 1, z > 0 .
Thus, we have found zero- and first-order terms in the expansion (5). Here R0 is the Fresnel reflection

coefficient from the ideally abrupt surface, whereas R1 is the sought correction due to the smoothing of
the spatial profile of permittivity ε(z). Finally, according to (5) and (18) the reflectivity can be written
as

R = R0

(
1− 2ik sin θ

ε− 1
P

)
(19)

with P given by (18).

3. P -polarization

The wave equation for p-polarization of the incident wave is usually written for the magnetic field B:

B′′ − ε′(z)
ε(z)

B′ +
[
ε(z)− cos2 θ

]
B = 0. (20)

The boundary conditions for B are the same as that for the electric field E [see (4)], and the reflection
and transmission coefficients Rp and Tp are represented by the same series (5) and (6) in powers of k.1

Therefore expansions (7)–(10) are valid for the magnetic field B too. Then, the general form (11) also
holds true for the magnetic field B. However, it is easy to verify that the recurrent relations (12)–(14),

due to the presence of the term
ε′

ε
B in (20), are replaced by

B′
n(z) = ε(z)

bn −
z∫

0

[
1− cos2 θ

ε(z′)

]
Bn−2(z′)dz′

 , (21)

Bn(z) = F (z)bn + cn −
z∫

0

(
F (z)− F (z′)

) [
1− cos2 θ

ε(z′)

]
Bn−2(z′)dz′, (22)

B0(z) = b0F (z) + c0, B1(z) = b1F (z) + c1, F (z) =

z∫
0

ε(z′)dz′. (23)

1Further in Sec. 3 we omit indexes s and p for the sake of brevity.
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Now, taking |z| � a in (21)–(23) we obtain the following presentation of the magnetic field B within
the domain a� |z| � λ:

B(z) = c0 + k

b1z + c1 − b1

0∫
−∞

[ε(z)− 1] dz

 , (24)

B′(z) = kb1 + k2

b2 − c0z sin2 θ + c0 cos2 θ

0∫
−∞

[
1− 1

ε(z)

]
dz

 (25)

for −λ� z � −a, and

B(z) = c0 + k

b1εz + c1 + b1

∞∫
0

[ε(z)− ε] dz

 , (26)

B′(z) = kb1ε + k2ε

b2 − c0 cos2 θ

∞∫
0

[
1
ε
− 1

ε(z)

]
dz − c0

(
1− cos2 θ

ε(z)

) (27)

for a � z � λ. Formulas (24)–(27), in a close analogy with Sec. 2, are to be compared with the
expansions (7)–(10) (which, as was mentioned, are also true for the magnetic field). From this, we find
again all the involved quantities Rn, Tn, cn, and bn including

R0 = R0p =
n0ε− n

n0ε + n
, R1 = −2in0R0

(ε− cos2 θ)P + ε2 cos2 θP1

n2
0ε

2 − n2
, (28)

where

P1 =

∞∫
−∞

[
1

ε(z)
− 1−

(
1
ε
− 1

)
η(z)

]
dz (29)

and P is given by (18). The value R0 in (28) is the Fresnel reflectivity at the ideally abrupt interface,
and R1 describes the correction connected with the smoothing of the spatial profile of permittivity ε(z)
[see expansion (5) which is valid for p-polarization too]. Thus, finally, we obtain the reflectivity of the
p-polarized beam in the following form:

R = R0

[
1− 2ik sin θ

ε− 1
P

(ε− cos2 θ)P + ε2 cos2 θP1

ε sin2 θ − cos2 θ

]
. (30)

4. Final Formulas

The use of (19) and (30) yields the following formulas for reflectivity |Rs|2 and polarization factor
ρ = Rs/Rp of a sample covered by an overlayer:

|Rs(θ)|2 = |R0s(θ)|2 (1−A sin θ) , A = −4kIm
P

ε− 1
, (31)

ρ(θ) = ρ0(θ)
(

1− iA1

2
sin θ cos2 θ

ε sin2 θ − cos2 θ

)
, A1 =

4kε

ε− 1
(P + εP1) , (32)
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where R0s(θ) and ρ0(θ) are the values given by the Fresnel formulas (1) and P and P1 are determined
by (18) and (29).

Thus, we express |Rs|2 and ρ(θ) of a nonideal sample with graded interface in terms of the spatial
integrals P and P1 of the dielectric function ε(z). If ε(z) is a stepwise function ε(z) = 1 + (ε − 1)η(z),
then A = A1 = 0 and no correction to the Fresnel formulas appear, as it should be. Formulas (31), (32)
are valid within the accuracy of a sin θ/λ, where a is the scale of the overlayer thickness.

In the measurement of optical constants Re ε and Im ε from the reflectometry or ellipsometry data
(when ε(z) is usually unknown) the real value A and complex A1 can be used as fitting parameters in
formulas (31), (32) characterizing the contamination or transition layer at the surface of a sample.

5. Discussion

1. It can be shown directly from (3) and (20) that, if we replace ε(z) by ε(z−d), the reflectivities Rs(θ)
and Rp(θ) acquire the factor exp(2ika cos θ) providing translation invariance, i.e., the observable
characteristics |Rs|2 and ρ(θ) of a sample do not depend on its location. One can verify that our
result also satisfies this requirement. In other words, if we replace ε(z) by ε(z−d), the values |Rs|2
and ρ(θ) given by (31), (32) stay unchanged.

2. Formula (31) satisfying general physical requirement of translation invariance is especially conve-
nient for fitting the experimental data on bulk reflectivity. The contamination layer is effectively
taken into account by only one real parameter A. Recall that asymptotically this is the exact result,
if the thickness of the overlayer is small compared with the wavelength λ. Consequently, the smaller
the value of A fitting the experimental reflectivity, the cleaner and more perfect the surface of the
sample.

3. Fresnel formulas, as can be seen from (1) and (2), possess specific symmetry which is expressed by
the relation

|R0s(θ)|2 =
∣∣∣∣ ρ0(θ)− cos 2θ

1− ρ0(θ) cos 2θ

∣∣∣∣2 . (33)

Note that ε does not appear in (33). This relation does not hold for an arbitrary shape of the
dielectric function and can be used as a check of abruptness of ε(z). Using (31), (32) and taking
into account (33), we have

1
|Rs(θ)|2

∣∣∣∣ ρ(θ)− cos 2θ

1− ρ(θ) cos 2θ

∣∣∣∣2 = 1 + A sin θ +
1

4 sin θ
Im

[
A1

R0s

(R0s + cos 2θ)(1 + R0s cos 2θ)
ε sin2 θ − cos2 θ

]
. (34)

Only values directly measured in reflectometry and ellipsometry are presented on the left-hand side
of (34). Therefore, the latter also can be used for fitting the experimental data to find the bulk
dielectric constant ε, as well as the overlayer parameters A and A1.

6. Simulation

To check the accuracy of the formulas obtained above, several examples have been calculated.
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Fig. 1. Reflectivity of Ir covered with a contamination Ir film of thickness d = 6.0 nm (a) and 8.0 nm (b) at
wavelength λ = 46.9 nm, s-polarization. The dashed and solid curves show the exact solution and approximate
function (19), respectively, and the dotted curve corresponds to the case without a film.

The first deals with the wavelength 46.9 nm. The optical constants of various optical and microelec-
tronic materials were determined in [5] on this wavelength using a compact capillary discharge laser. We
calculated reflectivities using formulas (19) and (30) as well as the exact Fresnel expression assuming
that all the interfaces are ideally abrupt. The results are shown in Figs. 1 and 2 for bulk Ir covered with
a contamination film. Optical constants for all the materials were taken from [5]. One can see that our
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Fig. 2. Reflectivity of Ir covered with a contamination Ir film of thickness d = 3.6 nm (a) and 8.0 nm (b) at
wavelength λ = 46.9 nm, p-plarization. Curves are the same as in Fig. 1.

approximation works for film thicknesses less than 8.0 nm.

The second example deals with the wavelength 13.0 nm that is important for VUVL lithography
applications. The results are shown in Fig. 3 for bulk SiO2 with C film. The calculation results for
p-polarization are similar to those for s-polarization. Optical constants were taken from [9]. One can see
that our approximation works for film thicknesses less than 4.0 nm.
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Fig. 3. Reflectivity of SiO2 covered with a contamination C film of thickness d = 3.0 nm (a) and 4.0 nm (b) at
wavelength λ = 46.9 nm, s-polarization. Curves are the same as in Fig. 1.

7. Summary

Formulas describing reflectometry and ellipsometry data in the presence of an overlayer on a bulk
surface are suggested. They are based on general scattering theory and specific symmetry of the Fresnel
reflection laws. The approach can be applied to improve the accuracy of determination of bulk optical
constants, as well as to characterize the overlayer arising due to contamination or other interface im-
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perfections. Model calculations show that in the XUV range it is capable of describing overlayers with
thickness up to several nanometers.

Higher-order corrections to the Fresnel formulas proportional to (a sin θ/λ)2 [6] can also be used. This
can be important if the bulk and overlayer materials are both low absorbing. Our theoretical approach
is an asymptotic solution of a differential wave equation. This method can be obviously extended to the
case of a substrate coated by a film. The goal is to give an approximate description of the interfaces
vacuum/film and film/bulk. This could be useful for measurement of optical constants of materials in
thin films [8].
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